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ONE METHOD OF NUMERICAL SOLUTION OF

THE NAVIER-STOKES EQUATIONS FOR A COMPRESSIBLE GAS

A. I. Tolstykh

1. The necessity of using the Navier-Stokes equations /78*

frequently arises when solving many problems of aerodynamics.

This is done either for low Reynolds numbers (for example, in

the case of low density gas flow) or at large Reynolds numbers,

when boundary layer theory does not provide an effective descrip-

tion of the flow in the entire region being considered. The

latter class of problems includes the problem of the interaction

of a shockwave with a boundary layer, the wake behind a body,

etc.

Even in those cases when the existence of stable solutions

of the Navier-Stokes equations may be assumed, great difficulties

are encountered in obtaining them by means of finite difference

methods. These difficulties are related, in particular, to the

large gradients of the unknown functions; these gradients are

substantial in the regions of the boundary layer and the shock-

waves. Under these donditions, the use of difference schemes of

low order of accuracy leads to the fact that, in the case of

real values of the difference grid steps, the errors of approxi-

mating the differential equations may be comparable with the

terms of the difference equations containing the viscosity

coefficient.

*Numbers in the margin indicate the pagination of the
original foreign text.

1



The effect of using schemes of high order of accuracy is

greatly reduced, in the first place, due to the large values of

the higher derivatives of the unknown functions included in the

expression for the scheme approximation error. In the second

place, it is reduced due to the frequently occurring non-

monotonic nature of the solutions of the difference equations,

which becomes very noticeable at large values of the Re and M

numbers.

The use of existing difference schemes for complete

equations for the flow of a viscous compressible gas [1 - 4] /79
(in addition to those enumerated in [El - 2], we should also

note [3] and [4]), is apparently limited by the region of com-

paratively small values of the Re numbers. A description is

given below of a method for obtaining numerical solutions of

the Navier-Stokes equations for different problems of aero-

dynamics in a wide range of Re numbers. Examples are given of

calculations to determine the effectiveness of the method in

relatively simple cases.

2. In the flow region being considered, let us assume

there are zones of large gradients of the unknown functions

(for example, shockwaves or boundary layers), which impede the

effective use of the difference schemes.

For purposes of simplicity investigating a plane or axi-

symmetric case, let us select an orthogonal system of coordinates

s, n such that the discontinuity lines, which these zones cross

at - o, intersect the lines s = const at non-zero angles.

In the general case, let us assume that it is necessary to
find the solution of the boundary value problem for the Navier-

Stokes equations in the region
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s , nb(s) so O s n T,

where t is the time, n 0 (s) - body surface, and nb(s) - a certain

"external" boundary. Instead of the variables s, n, let us

introduce new independent variables s,

where u and v are the velocity components corresponding to the

coordinates s and n.

We shall require that the function C satisfy the following

conditions:

b,

The first condition is the norming condition, the second

condition indicates that the transformation is one-to-one.

In addition, let us select the function so that it changes

by one order of magnitude in regions with large gradients, i.e.,

so that it approximately repeats the change along the coordinates

of the velocity components which are undergo a discontinuity at

Re - c.

It may be expected that the solution of the original

differential equations, described in the coordinates (1), will

contain a comparatively slowly changing function of the variable

C, so that on the plane s, the regions disappear with small

characteristic dimensions striving to zero with an increase in

the Re number. In this case, the errors arising during the

3



substitution of the differential equations by difference equa-

tions, due to the comparatively small values of the higher

derivatives with respect to C of the unknown functions, must be

greatly reduced as compared with similar errors in the case of

approximation in the physical s, n plane. It may also be assumed

that there is a decrease in the non-monotonic nature of the

solutions of difference equations in the case of schemes of

higher order of accuracy.

In contrast to the regular bunching of nodes of a difference

grid, we should note that in regions with large gradients of the

functions (for example, [5]), the transformation (1) does not /80

require an a priori knowledge of the distribution of these

regions. In the case of a uniform grid, along the coordinate

C this bunching is performed "automatically" in the process of

obtaining a solution.

After the change to the coordinates (1) in the initial

equations there is a new function /(s.) ia. The second of

the equations (1), which is a definition of the function C,

closes the system. The variable n, included in (1) and in the

Lame coefficients for a curvilinear system of the coordinates

s, n, may be determined with sufficient accuracy by means of

the quadrature

d, (2)

3. Let us establish the effectiveness of introducing the

transformation (1) in two characteristic cases, when there is

either a shockwave or a boundary layer in the field of steady

flow.
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The problem of the structure of a rectilinear shockwave is

an example, when the selection of the function C is particularly

simple. We should note that this classical problem is frequently

a criterion for the applicability of a certain difference scheme

(for example [6]).

Let us assume all the functions depend only on one coor-

dinate n and at n + - the flow is supersonic flow. Relating the

velocity v and the density p to the velocity V. and density p.

of an unperturbed flow, and the pressure p and the enthalpy h

to the values pmV 2 and V z , we may write the boundary conditions

of the problem in the form

I,!:; v . I for n 1 |II

for n

where M is the M number of the unperturbed flow; y - adiabatic

index.

Setting 1-v-oh, - v) , we find that the function

satisfies all of the requirements formulated above. The equations

of the gas flow in a one-dimensional shockwave may be written in

the form

d4

d , I f
i d5

_I (v v,,)5



where Pr is the Prandtl number; w - the constant (0.5 5 5 1);

S- viscosity coefficient pertaining to the viscosity coefficient

1, when h = 1.

Let us introduce the difference grid ( (1i I..,I, )

and let us write for Equations (4) an admittedly rough difference /81

scheme of the first order of approximation. For this purpose,

let us replace the first derivatives of all the functions, except

for pressure, by unilateral difference relationships. We shall

approximate the derivatives dpdo by means of the integral

differences. We may write the approximation of the derivatives

idqa4I -'~ with an accuracy up to terms on the order of .....

without centering the coefficient pX with respect to the nodes,

at which the derivative dh f . is calculated. The system of

difference equations for the system (4) with the boundary con-

ditions (3) and the apparent condition X(1) = 0 may be solved

by the method of successive approximations by introducing the

relaxation parameter. Each equation is regarded as a linear

equation during one iteration.

The calculations were carried out for the case M = 10,

Pr = 0.75, Y = 1.4, and w = 0.5. Figure 1 shows the relation-

ships of pressure, enthalpy, and the value of X * for a dif-

ferent number of nodes in the grid (N = 5, 10, and 20). The

gasdynamic functions have comparatively*, so that any difference

approximation of the inertial terms must not lead to great

errors. This is confirmed by the fact that the curves for the

functions h and p, even in an unfavorable case of a rough

scheme when N = 5, 10, and 20, differ from each other very little.

The small difference in the curve of the function X may be

explained by the first order of approximation for the term with

*[Translator's Note: Illegible in foreign text.]
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Anal.
solution Ar 47r

Figure 1. Figure 2.

the viscosity coefficient in the second equation (4).

To change to the physical plane, let us place the origin

at the point y = 1/2 and we shall calculate the integrals

d - ( 5 )

In view of the fact that the function X has zeros when

= 0 and 1, to derive (5) special quadrature formulas are

formulated. The results of the integration are given in Figure

3, which shows the velocity and pressure profiles (points)

together with the accurate solution (solid line) corresponding /82

to the case Pr = 0.75, w = 1/2, and M. = 10.

4. Let us now consider the case of axisymmetric flow,

in which at large Re numbers there is a boundary layer. This

case is advantageous due to the fact that the results obtained

may be compared with known data for nonviscous flow and a

boundary layer.
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! Let us select the system of

Ide-AVcoordinates s, n connected with a

, sufficiently smooth contour of the

body, placing its origin at a

critical point and directing the

1 n axis along the normal to the

>0 surface. We shall try to find a

numerical solution for the complete

steady-state equations of Navier-

Stokes in the O s nb(S). 0 4 SJIs

Figure 3. band, where nb(s) is the front of

the outgoing shockwave, which we

shall assume is a discontinuity surface. The conditions of

capture and the condition for the temperature when n = 0, the
symmetry conditions when s = 0, and the Hugoniot relationships
when n = nb(s) will be used as the boundary conditions. Strictly

speaking, the conditions on the shockwave are insufficient in

the case of a viscous gas. However, when writing the difference

scheme, we shall always approximate the equations on the n = nb
line by means of the boundary and inner nodes of the region,

formally obtaining a closed system. The basis for this is as

follows: in the first place, for our purposes, the inaccuracies

in the boundary conditions are insignificant. In the second

place, at large Re numbers, the flow around a wave is practically

nonviscous, so that the method of approximating the terms with

the viscosity coefficient in the vicinity of the line n = nb
must not have a great influence upon the solution obtained, We

will impose no additional conditions on the line s = s . With

a sufficiently large value of so, the perturbations which are

propagated upward along the flow from the s = sO line must be

rapidly damped.
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Let us introduce the function C as follows:

(u/ub) 4-Cn]+Cnb (6)
1+ Cn b

where C is a constant which is selected sufficiently large so as

to guarantee the monotonic nature of the function C(n).

A suitable selection of C makes it possible to use the

transformation (5) for a wide class of problems (flow in the

separation zone, in the wake, the nozzle, etc.).

In the Navier-Stokes system described in the s, n coordinates

[7], we shall change to the independent variables s, C. For a

numerical solution of the equations obtained, we may use the

well known difference schemes. However, the calculations were

carried out by means of a special scheme having a high order of

approximation with respect to (. We shall describe this scheme

in general terms.

The equations for the normal components of momentum, energy, /83

and continuity may be represented in the following form:

a) W it, (7 11)

b) Wp- - u)q (7)

C) IV - g4) -0



Here W is the differential operator containing only con-

vective terms of the equations and not containing derivatives

with respect to k - the curvature of the contour; H = 1 + kn:

Ua + . nd (s, ' )/ds

where Tnn and qn are, respectively, the stress tensor components

and the normal component of the thermal flux; Re - Reynolds

number calculated according to the parameters of the unperturbed

flow, viscosity at * = 1, and radius of curvature for the con-

tour at the critical point R0 . All linear dimensions pertain

to R 0 , and the curvature refers to 1/R 0 ; T1 and T2 are the

remaining terms of the equations, containing the viscosity

coefficient.

On the difference grid s~- ,. i=jAC (I0, I.,. .0jA1, i-
=0-, .. . 1I , we may introduce the operators A+ and A which are

in operation according to the formulas

(A -f)j, 1 2 12(5f 1 8f1 2-f:,+ );
(8)

I

We may write the difference scheme for Equation (7) in the

following form:

. +++.+ . +++ :+ i+(9 )
V r- Cun

*[Translator's Note: Illegible in foreign text.]
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approximating the derivatives with respect to s, included in the

operator, according to a three-point scheme by using the values

of the functions on the previous lines s, const (i -2). It may be

readily established that the approximation error at the point

(i, j + 1/2) has the form

) 4dO(I

and that the scheme (9) at the point (i, j + 1/2) approximates

the equation (8) and its solutions with an accuracy of (>(0 AsJ.

Applying the operators A and A to the expressions

WWiJ
kI"

we obtain similar schemes for the equations (7a, b). Thus,

the error of the approximation, when writing the terms in the /84

right sides of (7a, b), with the second order of accuracy with

respect to all the variables, will have the form

It is apparent that, in the case of large Reynolds numbers,

the approximating properties of the scheme being considered do

not become worse with a change to the equations (7a, b), at least

in the region of small gradients of the desired functions.

Noting that the operators A+ and A determine the quadrature

formulas of the form
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it may be readily established that, with a corresponding approxi-

mation of the terms containing the viscosity coefficient, the

schemes for Equations (7a, b) are conservative and may be obtained

by means of the laws of conservation for meshes of the form

Sf-112-7 1 Si, 
The selection of the operators A+ or A was determined from the

condition that, in the first place, the nodes employed did not

exceed the boundary of the region and, in the second place, that

in the linear approximation all of the eigennumbers of the

corresponding operators for the change with respect to the

modulus do not exceed unity. Satisfaction of the second condi-

tion was related to the magnitude and direction of the velocities.

The equation of momentum, in projection on the s axis,

after certain transformations and substitutions of the deriva-

tives by finite differences, was written for the line s = s.
1

in the following form

I - d- ) j = , +U - ,1 (10)

where ai.. and b..ij do not contain the values of the function X
13 13

on the i t h line, and (4xd) 0 is the difference approximation of

the derivative d;d . We reach an equation of the form (11),

using the laws of conservation of tangential momentum for an

elementary mesh.

For the function X, Equation (10) plays an important role

in the system obtained. In particular, it may be shown that,

depending on the signs of the coefficients ai.. and bij , the
13 1

function X may correspond either to separated or non-separated

flow.
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The general solution of the system of algebraic equations

by an iteration method was as follows. During one iteration,
ththere is a sequential transition from the i- line to the

th(i + 1)t h line, according to an implicit scheme, and in the

case 4i 2 the values found at two preceding lines were used.

The values of the functions when ss , and also certain

other terms of the equations (7a - c) were selected from the

previous iteration. The specific characteristics of solving the

equations along each line consisted of the fact that the rate

v..ij was determined, not from the equation (7a), but from the

continuity equation (7c). On the other hand, the density pij

was found from the equation for a normal momentum (7a).

A special method was used to determine k.. from Equation

(7b). The solution of Equation (10), after replacing the

derivative in the left side by a two-point scheme, was reduced

to the subsequent calculation of the values X at the points j =

1, 2, ..., l/AC. The boundary values o were determined from

the condition that the velocity aw , found from Equation (9), /85

equal the velocity at the discontinuity vb. The process of

determining f. employed the Newton method, and the required

convergence was obtained as a result of one-two iterations.

The values found for on the line s ,. ~ As
were used to determine the coordinate n.. of the nodes in a

physical plane, and then the values of the tangential velocity

uij were calculated from the finite relationships of the form (6).
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After completing a regular iteration, i.e., determining

the parameters on all the lines ssi , , the

angles of inclination of the shockwave were calculated and,

consequently, the values of all the functions for the wave for

the subsequent iteration. In final form, any of the values
mobtained for f*. may be written in the formij

where m is the iteration number, A - relaxation parameter.

Even without an optimum selection of the parameter A (in all the

calculations it was assumed that A 0.1), the convergence up

to 3 - 4 signs, as a rule, was achieved after 200 - 300

iterations in the case of a zero approximation by means of the

constant and linear functions of C.

5. Let us discuss the results of calculations carried out

for the numbers M, = 10, y = 1.4, and Pr = 0.72 for the cases of

a condensed sphere hwI--l)M m-0.51 and Pr = 0.72. With the

number of the grid nodes

AC As

the value of sO  1.2 was varied and had no noticeable influence

upon the data.

Figure 3 shows the profiles of velocity u and v, enthalpy

h, pressure p, and density p on the line s = 0.6 at Re = 100, 500,

and 5000, corresponding to Reynolds numbers calculated according

to the parameters of unperturbed flow, approximately equalling

640, 2300, and 32,000, respectively. For the cases Re = 500 and

5000, Figure 4 gives data obtained for N = 25 (dots) and N = 50

(solid lines). These results barely differ. Apparently, a

sufficient computational accuracy may be obtained by means of a

relatively large step A of the difference grid. We should also

14



Figure 4. Figure 5.

note that, with an increase in the Re number, the dependences

of the gasdynamic parameters on the C coordinate are comparatively
conservative and do not have sharply expressed gradients. The

basic changes occurring as the boundary layer becomes thinner

in the physical plane, are concentrated at the function Os..)

characterizing the vorticity of the flow. Close to being con-

stant in the "external" region, this function begins to increase

rapidly, assuming larger values on the body surface, the larger

is the Reynolds number. However, the width of the region

corresponding to the boundary layer, is finite in the s,

plane and does not vanish when Re + .

The changes in the gasdynamic parameters along this line
* = 0.6 in the physical plane are given in Figure 4. For

purposes of comparison, this figure gives the results of calcu-

lating nonviscous flow [8] M. = 10, y = 1.4 corresponding to the
cross section s = const.

*[Translator's note: Illegible in foreign text.]
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As may be seen in Figure 4, /86

the profiles of the gasdynamic

functions obtained by means of the

Navier-Stokes equations, except for

45 CA the boundary region, are close to

) 1- the flow profiles of a nonviscous

gas. The basic changes of these

oundary functions take place in a narrow
layer =(1)

zone around the wall where, for

4,1k example, the density changes by

S, , approximately a factor of 20.

Figure 6. Figure 5 gives the distribu-

tion along the body surface of the

friction coefficient CVe, Re)(ydu e p , the thermal flux

( Re Pr op, , the pressure Pr=p(s,) , and also the

magnitude of the shockwave departure s = nb.

The dashed lines give the dependence pw (s) and c = nb(S)

for the case of ideal flow. The smaller value of the distance of

the shockwave departure for a viscous gas corresponds to a nega- /87

tive value of the thickness of the boundary layer displacement in

the case being considered of a strongly cooled surface (h = h =
w

0.025). Finally, in logarithmic scale, Figure 6 gives a change

in the derivative hdcJ, 1f- and the heat transfer coefficient

"N q4 )th ./&.) , where h0 is the braking enthalpy, with a change

in the Re number. The linear nature of these functions at Re>10!

and the angle of inclination of the lines point to an inversely

proportional dependence of the friction coefficients and heat

transfer coefficients on AR-e. For purposes of comparison,

Figure 6 shows the change in the coefficient ck with the Reynolds

number, according to the boundary layer theory [9] when .,S.
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Thus, the results of the calculations, performed on the basis of

the complete Navier-Stokes equations, closely coincide at large

Reynolds numbers with the data for the corresponding nonviscous

flow and boundary layer.

In conclusion, we would like to note that the transformation

(1) may be simplified for the case which is not considered here,

when it is advantageous "to stretch" the region both of the

boundary layer and of the shockwave.
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